307 research outputs found

    Singularity computations

    Get PDF
    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations

    Development of the program SPECEL: A special element for elasto-plastic crack tip analysis

    Get PDF
    Theory is stated in terms of increments of displacement and stress, and of instantaneous or accumulated values of stress. The equilibrium equations, in the absence of body forces, are written, along with constitutive relations for plane strain

    Research priorities for advanced fibrous composites

    Get PDF
    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites

    Experimental and analytical strains in an edge-cracked sheet

    Get PDF
    Elastoplastic strain distribution in edge-cracked metal sheets determined by optical interference and moire technique

    Analysis of notches and cracks - A numerical procedure for solving the equations of elasto-plastic flow in three independent variables

    Get PDF
    Equations for solving initial and boundary value problems in elastoplastic flow in longitudinally stressed, axisymmetric notched rod

    Interactive program for analysis and design problems in advanced composites technology

    Get PDF
    During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems

    Bod1, a novel kinetochore protein required for chromosome biorientation

    Get PDF
    We have combined the proteomic analysis of Xenopus laevis in vitro–assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule–kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles

    Bioimage informatics: a new category in Bioinformatics

    Get PDF
    The last two decades have witnessed great advances in biological tissue labeling and automated microscopic imaging that, in turn, have revolutionized how biologists visualize molecular, sub-cellular, cellular, and super-cellular structures and study their respective functions. Tremendous volumes of multi-dimensional bioimaging data are now being generated in almost every branch of biology. How to interpret such image datasets in a quantitative, objective, automatic and efficient way has become a major challenge in current computational biology. Bioimage informatics methods have begun to turn image data into useful biological knowledge (Peng, 2008; Swedlow, et al., 2009; Shamir, et al., 2010; Danuser, 2011). The essential methods of bioimage informatics involve largescale bioimage generation, visualization, analysis and management. Bioimage informatics also encompasses both hypothesis- and datadriven exploratory approaches, with an emphasis on how to generat

    Triomensional plasticity using BIEM

    Get PDF
    This paper presents the application of BIE techniques to elastoplastic three-dimensional problems. Along with the general procedures the needed integrations are described in detail and so is the flow chart of the written program

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org
    • …
    corecore